
LYAUNO EGUATIONS FOR..(U) MASSRCHUSETTS INST OF TECH
LNIMS CMRlOGE LRB FOR INFORNRTION ANDD.

IFIE R IKOWN~fET AL. 03 MAR G9 LIDS-P-175O F/G 12/2 M

EhhhhmmhEhmmhhhmml
I ilhhhhhhhhhhh



1.0.

1.0 ~ 1.8 2

16.4 1.6

1111 
-

L:V 

I



IEPO6 DOUAGATOEPG

III RESTRICTIVE MARKINGS

AD -A 1 5 6453. GISTASSUTIONIAVAILASILITY Of REPORTAD-A 95 64 ________ Approved for public release,
- - disri'::~b~~mimted

4 EPMING ORGANIZATION mEpoar AIumsEERSI S. qONI10RING ORGANIZATION REPORT NumeRi(Si

AFOBR.TR. 8 80 6 30Q
GaNMEO PGAPORMING ORGANIZATION 66 OPP ICE SYMDOL 7.. NAME op MONIsTORIN ORGANIZATION

Mass. Inst. of Technology AFOSR ,

E.AOOREU8 lfCU. SQ140 01d ZIP COO) Mb AOORESS (City. safe did ZIP Co"e,

Cambridge, MA 02139 BLDG #410
Boiling APB, DC 20332-6448

I&. NAME OP PUNIOIN@JU1PONEORING Eb. OPPICE SYMBSl. 9. PRkOCUREMENT INsToRUMENT ioENmTipicATION NumBER

AOINMAFOSR- 88-003 2
G.A00040S6 (00l. SAW aid ZIP C1) 143. SOURCE OP PUNOING NO1. __________

PROGRAM PROJICI TASK WOAX UNIT .

BLG#1 LIEMINT NO. NO0. NO. NO0

Boiling APB, DC 20332-6448 61102F 2304 A

Alan S. Wisky, Bernard C. Levy, Ramine nkuka

13& Type OP REPORT 13W TIME COVE RSO t4. oATE OP REPORT (yr. Ma. Gei Is. PAG& COUNT

Journal Reprint TPROM _____ ___ 88/03/03 50

if. SUPPLEMENTARY NOTATION

17. COSATI COOGS 18 SkdIjECT ?ERMAS iCantue oft oVuuem if neos and idefigly &y W~eh numbert
01IE GROUP sUe. OR Stability; Two-point boundary value problems.

19. AEBYRACI lContinue on Fae.,. 4fnectsse#7 andagn' I, e81,Aocqnubrn.@t

SEE REVERSEtT C
QLECT

2a. OISTRIEUTIO#4/AVAILAGILITY 0P AESTQA- 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIPIEOUNLIMITEO XX5AM6AS PP'. ~ UNCLASSIFFIED

2UNM PASO411. NIIUL22b TELEPIHONE NUMBER 22. OFFICE SYMOOL. '
JAMES m CROWLEY, Maj, USAF (nld m o* i

02-767- 5025 'il

00 FORM 1473,863 APR s?'11 SOESOLITI.



I.€

Abstract

In this paperi' we introduceW the concept of internal stability for two-point

boundary-value descriptor systems (TPBVDSs). Since TPBVDSs are defined only

over a finite interval, the concept of stability is not easy to formulate for these

systems. The definition which is used here consists in requiring that as the length
of the interval of definition increases, the effect of boundary conditions on states

located close to the center of the interval should go to zero. Stochastic TPBVDSs

are studied, and the property of stochastic stationarity is characterized in terms
of a generalized Lyapunov equation satisfied by the variance of the boundary vec-

tor. A second generalized Lyapunov equation satisfied by the state variance of a

stochastically stationary TPBVDS is also introduced, and the existence and

uniqueness of positive definite solutions to this equation is then used to character-
ize the property of internal stability...
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Abstract

In this paper, we introduce the concept of internal stability for two-point

bourdary-value descriptor systems (TPBVDSs). Since TPBVDSs are defined only

over a finite interval, the concept of stability is not easy to formulate for these

systems. The definition which is used here consists in requiring that as the length

of the interval of definition increases, the effect of boundary conditions on states

located close to the center of the interval should go to zero. Stochastic TPBVDSs

are studied, and the property of stochastic stationarity is characterized in terms

of a generalized Lyapunov equation satisfied by the variance of the boundary vec-

tor. A second generalized Lyapunov equation satisfied by the state variance of a

stochastically stationary TPBVDS is also introduced, and the existence and

uniqueness of positive definite solutions to this equation is then used to character-

ize the property of internal stability.
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1. Introduction

Noncausal physical phenomena arise in many fields of science and engineer-

ing. These phenomena correspond usually to processes evolving in space, instead

of time. To model such processes, the usual state-space models familiar to system

theorists are not appropriate, since these models were deve!oped primarily to

describe causality, in the sense that the "state" of a system at a given time is a

summary of the past inputs sufficient to compute future outputs. One is then led

to ask: what is a natural class of models to describe noncausal phenomena in one-

dimension? It is the goal of this paper, as well as of earlier papers and reports [1]-

[4j, to suggest that perhaps the most natural class of discrete-time noncausal

models in one-dimension is the class of two-point boundary-value descriptor sys-

tems (TPBVDSs). This conclusion is drawn from the observation that the impulse

response of a time-invariant descriptor system is noncausal, and that the dynam-

ics of these systems are symmetric with respect to forwards and backwards propa-

gation. In addition, for systems defined over a finite interval, two-point

boundary-value conditions will also enforce noncausality in the sense that both

ends of the interval play a symmetric role in the expression of the boundary con-

ditions.

The noncausality of discrete-time descriptor systems is a well known feature

of these systems. It is for example much in evidence in the early work of Luen-

berger [5]-[6], where it is also pointed out that two-point boundary-value condi-

tions are usually needed to guarantee well-posedness of these systems. In Lewis [7),

it was shown that these systems could be decomposed into forwards and back-
wards propagating subsystems, so that their solution involves recursions in both

time directions. However, in spite of these useful observations, it is fair to say

that most of the literature on descriptor systems has focused mainly on issues of

structure [8]-[10], and their implication for the control of descriptor systems [11]-

[14]. This is primarily due to the fact that in continuous-time, descriptor systems

display an impulsive behavior, which until recently has been the focus of most of

the attention.

One of the most important influences for the work reported here has been the

work by Krener i15i-i18] on the system-theoretic properties of standard (i.e.,



nondescriptor) continous-time boundary-value systems, and on the use of stochas-

tic boundary-value systems to realize reciprocal processes. The results of Krener,

as well as the related work of Gohberg, Kaashoek and Lerer [191-[21], have pointed

out that boundary-value linear systems have a rich internal structure, and can be

used to model a wide class of nonMarkov, i.e. noncausal, stochastic processes. The

results presented in this paper, as well those of [1]-[4[ combine in some sense the

degree of noncausality attributable to the boundary conditions, which was already

present in Krener's work, with an additional source of noncausality, namely the

noncausal dynamics of discrete-time descriptor systems.

Another important motivation for the study presented here is our own work

on linear estimation of noncausal stochastic processes in one or several dimensions

[221-[24]. Since the framework proposed in (22] and [23] for the solution of non-

causal estimation problems is totally general, and is applicable to absolutely any

model in any dimension, one of our objectives has been to find 1-D models which

display as much noncausality as possible, so that estimation results developed for

these models will be easy to transpose to higher dimensions. This has led us in [4]

to examine estimation problems for TPBVDSs. In this context, it was shown that

the TPBVDS smoother was itself a TPBVDS which could be decoupled into for-

wards and backwards filters through the solution of certain generalized Riccati

equations [25]. However, this study raised a number of system-theoretic questions:

do reachability and observability guarantee the existence and uniqueness of

positive-definite solutions for the generalized Riccati equations that we obtained?

Is the estimator stable, and if so, in what sense, since TPBVDSs are defined only

over a finite interval? More fundamentally, is it possible to define concepts of

reachability, observability, and minimality for purely acausal systems such as

TPBVDSs? In other words, we needed to develop a complete system theory for

TPBVDSs, and the present paper is part of a sequence of papers devoted to the

exposition of such a theory.

In [1], the concepts of outwards and inwards processes, which were originally

introduced by Krener 116] for boundary-value systems, were developed for

TPBVDSs, and were then used to define concepts of strong and weak reachability

and observabilitv. Several recursive solution schemes for TPBVDSs were also
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proposed, which rely on the forwards/backwards and inwards/outwards decompo-
sitions of these systems. These results were then specialized to deterministically
stationary TPBVDSs in [2], and in this context, results linking reachability, obser-
vability, and minimality were obtained. Again, these results were closely related to

corresponding results obtained by Krener, and by Gohberg and Kaashoek, for

boundary value systems. The present paper contains the first significant departure
from existing work on boundary value systems in the sense that we introduce a
new concept, that of stability, which has not yet been used to study noncausal
systems. As will become apparent below, the notion of stability is not easy to for-

mulate for TPBVDSs, since these systems are defined over a finite interval. How-
ever, a relatively natural concept is that of internal stability, whereby as the
length of the interval of definition of a TPBVDS grows, the effect of the boundary
conditions on states located close to the center of the interval goes to zero. A
theory of stability that parallels the standard theory for causal systems is

developed by considering stochastically stationary TPBVDSs, and by showing
that stochastic stationarity can be characterized in terms of generalized Lyapunov

equations. The existence and uniqueness of positive-definite solutions to these

Lyapunov equations is then characterized in terms of the property of internal sta-
bility. It turns out that the stability results developed in this paper will play a

key role in our subsequent study of the stability of TPBVDS smoothers, and of
the generalized Riccati equations presented in [4] and [25].

This paper is organized as follows. The properties of time-invariance and
extendibility for two-point boundary-value descriptor systems are described and
characterized in Section 2. These properties are then used to define the class of

deterministic ally stationary TPBVDSs, to which we restrict our attention in this
paper. In Section 3, two notions of stability, namely stable extendibility and inter-
nal stability, are introduced. Stable extendibility corresponds to the ability to
extend the Green's function of a TPBVDS defined over a finite interval to an

infinite interval, in such a way that both the dynamics and Green's function of
the original system are preserved, and the extended Green's function is summable.

However, it is shown that this concept of stability is not as fruitful as that of
internal stability mentioned above. In Section 4, we examine stochastic TPBVDSs,
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and study in particular stochastically stationary systems. Two generalized

Lyapunov equations which must be satisfied respectively by the state variance,

and the variance of the boundary vector are introduced. In Section 5, the property

of stochastic stationarity is characterized in terms of the second of these general-

ized Lyapunov equations. Finally, in Section 6 the existence and uniqueness of

solutions to the generalized Lyapunov equation satisfied by the state variance is

characterized in terms of the property of internal stability. The concluding Section

7 describes the role that the results of this paper are expected to play in the study

of the TPBVDS smoothers and generalized Riccati equations of [4] and [25i.

2. Time-Invariance and Extendibility

The two-point boundary-value descriptor systems (TPBVDS) considered in

this paper satisfy the difference equation

Ex(k +1) = Az(k) + Bu(k) , O<k<N-1 (2.1)

with the two-point boundary value condition

Vz(0) + Vf z(N)= v . (2.2)

Here E, A, and B are constant matrices, z and v are n-dimensional vectors, and

u is an m-dimensional vector. Since the system theoretic properties of this class

of systems, such as time-invariance, reachability, observability, and minimality

have been studied in detail in [1]-[3,, we review here only the concepts

It was shown in [Il that, without loss of generality, it can be assumed that

the system (2.1)-(2.2) is in standard-form, i.e., it satisfies the following two proper-

ties: (i) there exists some scalars c and 3 such that

rE +OA = , (2.3)

which implies that E and A commute; and (ii) the boundary matrices V. and Vf

are such that

Vi EN + Vf AN=i. (2.4)

A special class of two-point boundary-value descriptor systems which is of great

interest is the class of time-invariant TPBVDSs '21-31.

* 11j .. ,
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Definition 2.1: A TPBVDS is time-invariant if the Green's function G(k,l)

appearing in the solution

N-1
-(k) = AkENkv + \- G(k,1)Bu(1) (2.5)

1=0

of the TPBVDS (2.1)-(2.2) depends only on the difference between arguments k

and 1, so that

G(k,l) = G(k-1) . (2.6)

Unlike for causal systems, the fact that the matrices E and A are constant is
not sufficient to guarantee that the TPBVDS (2.1)-(2.2) is time-invariant. The

matrices E and A must also satisfy some properties in relation to the boundary

matrices Vi and Vf . The following characterization of time-invariance was esta-

blished in [2].

Theorem 2.1: A TPBVDS is time-invariant if and only if the matrices E
and A commute with both V, and Vf, i.e.,

[E,V] = [E,Vf] = [A,V,] = [A,Vf] , (2.7)

where

[X,Y] =XY - YX. (2.8)

In the following, we shall restrict our attention to time-invariant TPBVDSs,
and consequently, it will be assumed throughout the remainder of this paper that
identity (2.7) is satisfied. In this case, the Green's function G(k,l) can be
expressed as (see [2], [3])

) VAk--EN-k+ k>1
G(k,l) = G(k- I)- V IEIkAN_1-1+k k< (2.9)

which clearly depends only on the difference between arguments k and 1.

As was noted above, the reachability, observability, and minimality proper-
ties of time-invariant TPBVDSs were previously studied in [2]-[3]. In this paper,
we define and characterize the concept of stability for time-invariant TPBVDSs

and relate it to the property of stochastic stationarity through the use of a



- 7 -

generalized Lyapunov equation. However, an important issue which arises when

we attempt to define the concept of stability for system (2.1)-(2.2) is that this sys-

tem is defined only over a finite interval. It is therefore of interest to see whether a

given time-invariant TPBVDS defined over a finite interval is extendible to a

larger interval in some appropriate way.

Definition 2.2: A time-invariant TPBVDS given by (2.1)-(2.2) is extendible

if given any interval [K,L] containing [0,Nj, i.e., such that K<O<N<L, there

exists a TPBVDS over this larger interval with the same dynamics as in (2.1), but

with new boundary matrices Vi(K,L) and Vf (K.L) such that:

(i) The new extended system is time-invariant.

(ii) The Green's function G(k-l) of the original system is the restriction of

the Green's function Ge(k-1) of the new extended system:

G(k-I) = Ge(k-l) for Ik-I I<N . (2.10)

In [21, it was shown how to reduce the interval of definition of the TPBVDS

(2.l)-(".2) from !C,N to a subinterva) WK,L , with 0<K<L <N. in such a way

that the Green's function of the new system defined over the subinterval [K,L] is

the restriction to this smaller interval of the Green's function of the original sys-

tem defined over [0,N]. The dynamics (2.1) of the TPBVDS remain the same, but

the new matrices V,(K,L) and V/ (K,L) which specify the bonndary condition

Vi(K,L)z(K) + Vf (K,L)z(L) = v(K,L) (2.11)

over the smaller interval [K,L] can be viewed as obtained by "moving in" the

boundary matrices Vi and V1 appearing in (2.2), and are given by

V,(K,L) ViENLK (2.12a)

V! (K,L) = VfAN-L+K (2.12b)

Conceptually, the problem of extending the TPBVDS from interval 0,N] to a

larger interval JK,L1, in such a way that the Green's function G(k-1) is

preserved over the smaller interval [0,NI, is just the opposite problem of the one

that we have just analyzed. In this case, after the TPBVDS (2.1)-(2.2) has been

extended from interval [0,N] to [K,LJ, when we move back the boundaries from
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[K,L to their original locations, we should recover the original system. This

implies that the boundary matrices V, (K,L) and V1 (K,L) for the larger interval

must be such that

V, = V,(K,L)E L - K - N (2.13a)

V1 = V,(K,L)ALKN (2.13b)

The constraints (2.13) can be used to obtain the following characterization of

extendibility.

Theorem 2.2: A time-invariant TPBVDS is extendible if and only if the fol-

lowing two conditions are satisfied:

(i) Ker(E ' ) C Ker(V,) (2.14a)

(ii) Ker(A')CKer(Vf). (2.14 b)

Proof: The necessity of the above two conditions is just a consequence of

setting L -K = N + n inside constraints (2.13). To prove sufficiency, consider an

arbitrary interval [K,L] containing [0,N]. Then, note that conditions (2.14a) and

(2.14b) are equivalent to requiring that all the generalized eigenvectors of E and

A corresponding to the zero eigenvalue should be in the null spaces of V, and Vf,

respectively. In other words, we have

Ker(E') C Ker(V,) (2.15a)

Ker(A') C Ker(Vf ) (2.15b)

for all integers s. The relations (2.15a) and ( 2.15b) are equivalent to

Im(V,T) C m((ES)T) (2.16a)

Im(V/f) C Im((As)T) , (2.16b)

and setting s = L-K-N, this implies that there exists matrices V,(K.L) and

V1 (K,L) satisfying the constraints (2.13). However, these matrices are in general

not unique and do not necessarily commute with E and A, so that the extended *1
system over the larger interval K,L] may not be time-invariant. It turns out,

however, that there exists a special choice of boundary matrices V,(K.L ) and

V1 (K,L) such that the extended system is time-invariant and is itself extendible.

I
4,. . ' .t.€ ... - . . . J



i.e., it satisfies the commuta~ion relations (2.7) as well as conditions (2.14a) and

(2.14b), where the matrices V, and Vf are replaced respectively by V,(K,L) and
V! (K,L). These boundary matrices can be obtained as follows. Consider the

transformation

E - XJEX - 1  (2.17 a)

A = XJA X - 1 (2.17b,)

of E and A into their Jordan forms JE and JA, where the fact that E and A

admit the same set of generalized eigenvectors is a direct consequence of (2.3). In

general, JE and JA may contain blocks corresponding to eigenvalues which are

equal to 0. Let now

= X- (2.18a)
A A) X-' (2.18b)

where JE and JA are matrices obtained by replacing the zero eigenvalues of JE

and JA by eigenvaluez, equal to 1. Then, it is easy to check that the boundary

matrices given by

V, (K, L ) V, (E L- K - 'N -  (2.19a)

Vf (KL) =V! A-KN- (2.19b)

satisfy the constraints (2.13), as well as the time-invariance condition (2.7) and

extendibility conditions (2.14). Note also that the new extended system is in stan-

dard form, i.e., it satisfies (2.3) and (2.4), where N is replaced by the new interval

length L -K. -

The conditions (2.14) seem to indicate that if we restrict our attention to

extendible TPBVDSs, we may be ignoring interesting systems which are time-

invariant, but not extendible. It turns out, however, that given an arbitrary

time-invariant TPB\V)S defined over 0,N, where it is assumed that A'>2n.

there exists an "almost identical" extendible system. By "almost identical", we

mean here that for any input sequence u (1), the states x (k) and x' (k) of the two

systems are identical for kG'!n-.V-n ' . In fact, by examining expression (2.9) for

the Green's function G(k-l). Ne see that the almost identical exteridib]ic:,

00
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TPBVDS corresponding to a time-invariant, but not extendible, TPBVDS can be

obtained by replacing Vi and V1 by V,' and VI, such that

(i) V ' is the lowest rank matrix satisfying Vi' E' = V, E',

(ii) V/' is the lowest rank matrix satisfying ,' En = VE

The above choice has for objective to guarantee that Vi and V1 annihilate all the

nilpotent blocks of E and A. Since the n th and higher powers of these blocks are

zero in any case, the effect of this modification is seen only near the boundaries 0

and N.

On the basis of the above observations, it is clear that the class of time-

invariant, extendible TPBVDSs is in fact quite large, and according to the termi-

nology introduced in [21-[3] it will be called here the class of deterministically sta-

tionary TPBVDSs, and most of the results described in this paper will concern

this specific class of systems.

3. Stability

The extendibility property of deterministically stationary TPBVDSs is an

important feature that will be useful below to characterize a concept of stability

called stable extendibility. It turns out, however, that this concept of stability

leads to relatively uninteresting results, and in fact there exists a more interesting

concept of stability for TPBVDSs, called internal stability. Both of these concepts

are now defined.

A. Notions of Stability

According to our definition of a deterministically stationary TPBVDS, it is

always possible to extend the domain of definition of such a system. Another way

of looking at this property is that any stationary TPBVDS can be obtained by

moving in the boundaries of another stationary system defined over a larger inter-

val. An interesting question which is related to the issue of stability is under what

conditions we can push back the boundaries to ± -c in a meaningful Way, so that

the TPBVDS (2.1)-(2.2) can be viewed as part of a system defined over an infinite

interval.
%.
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Definition 3.1: A deterministically stationary TPVDS defined over 0,Nl

admits a stable extension if the Green's function Ge (k) of the TPVDS obtained by

extending the interval of definition to the whole real line is summable, i.e.,
+OC

E IIG,(k) II < c, (3.1)
-cc

where I. I denotes here the matrix norm induced by the Euclidean norm for vec-

tors of R '.

The above characterization describes one situation where the issue of stability

arises for TPBvDSs. However, there exists a second situation which is actually

more meaningful, and which leads to a different concept of stability. In this

second situation, we examine a time-invariant, not necessarily extendible TPBVDS

defined over a finite interval, and where the boundary condition (2.2) corresponds

to a physical constraint of the problem which cannot be modified. In this case,

when the dynamics (2.1) and boundary condition (2.2) are fixed, we would like to

study the effect of increasing the size of the domain O,N of definition of the

TPBVDS on the state variables x(k) located close to the center of this domain

One issue which arises in this context is that if the TPBVDS (2.1)-(2.2) is origi-

nally in standard form for a length N o of the interval of definition, and if we

increase the length to N without changing the matrices V,, V and the vector v

appearing in (2.2), the system will not remain in standard form, since identity

(2.4) is not satisfied for N>N 0 . Observe however that the boundary condition

(2.2) is not affected by a left multiplication by an invertible matrix. Consequently,

if we renormalize (2.2) by a left multiplication by (V EN + Vf A N)-' and change

the matrices V,, Vf and the vector v accordingly, the TPBVDS will be in stan-

dard form. In this context, it is possible to describe stability as follows.

Definition 3.2: The time-invariant TPBVDS (2.1)-(2.2) is internally stable if

as the length N of the interval of definition tends to infinity , the effect of the

boundary value v on any x(k) located near the mid-section of interval [0,N] goes

to zero, i.e.,

lim EN,/2A N/2(V,EN + Vf 4 )-l = 0 (3.2)
N-oc

...... ', .' ... .., . . , " -' e , ' .,' '" "' -
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To interpret condition (3.2), note that according to (2.5), and taking into

account the renormalization described above to.put the TPBVDS in standard

form as the interval length N is increased, the effect of the boundary vector v on

state x(k) is given by AkEN-k(VEN + VfAY)-1v. Thus, for k = A' 12, which

corresponds to a point in the middle of interval 10,N] , the effect of v on z(N2)

is EN/ 2 AN 2(VEN + VfAN)-lv.

As an illustration of the above concept of stability, consider a system that

describes the heat distribution around a ring. Since the ring is closed, this system

has a periodic boundary condition x(O) = x(N), which is independent of the size

of the ring. In this case, if a perturbation in heating conditions is applied to one

point of the ring, one would expect that as the size of the ring increases, the effect

of this perturbation will become smaller and smaller for points which are located

on the opposite side of the ring.

As will be shown below, it is possible to obtain necessary and sufficient condi-

tions that characterize the properties of stable extendibility and internal stability

for TPBVDSs. However, the conditions that we shall obtain are quite differen

and consequently, the two concepts of stability described above do not coincide.

B. Decomposition of a Time-invariant TPBVDS

The characterizations of stable extendibility and internal stability that will

be obtained below rely on the decomposition of a time-invariant TPBVD)S into

forwards, backwards, and marginally stable components. The starting point of

this decomposition is the following result, which was already used in 141.

Lemma 3.1: Given a TPBVDS in standard form, there exists invertible
matrices FD and T such that

ED= FDET = Ab 0 (3.3a)

AD = FDAT = 0 1 (3.3b)

0 0 .
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where A1 and Ab have eigenvalues inside the unit circle, and U has eigenvalues on

the unit circle.

The above decomposition is just a modification of the Weierstrass decomposi-

tion of a regular matrix pencil (see [26 , p. 28). The standard form condition (2.3)

guarantees here that the pencil zE - A is regular. Note that the transformation

(3.3) can be achieved by left-multiplication of (2.1) by FD and by performing the

state transformation

x(k) = TxD(k). (3.4)

However, one undesirable aspect of this transformation is that the new TPBVDS

is not in standard form, since the matrices ED and AD do not satisfy (2.3) for any

choice of a and 3. This leads us temporarily to rescale the TPBVDS by left multi-

plication by

FR = (UED + !OAD)- ' , (3.5)

for some appropriate choice of ot and 3 , so that

El 0 0

ER FRED 0 E2  0 (3.6a)

0 0 E3

Al 0 0

AR=FR AD= 0 A2  0 ,(3.6b)

0 0A 3

where

El (ceI + OflA - E2 = (arA b + OI)-'A b ,

E 3  (cd + 13U) _1 , (3.7a)

and

A1 = (I + 3A/ )-'Af , A 2 = (orAb + .31) ,

A 3 = (c -+3U)-IU (3.7b)

Taking into account the fact that the eigenvalues of A1 and Ab are inside the

'%V
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unit circle, and those of U are on the unit circle, it is easy to check that the

blocks El, E 2 and E 3 do not have eigenvalues in common. Similarly, the blocks

A,, A 2 and A 3 have different eigenvalues.

Combining now transformations (3.3) and (3.5), B becomes BR = FB, where

F = FR FD, and the boundary matrices become

VR, = LR V, T , VR = LR V T, (3.8)

where the normalizing matrix LR is selected here such that relation (2.4) is

satisfied by the new TPBVDS. Finally, if the original TPBVDS was time-

invariant, the new TPBVDS is also time-invariant since its Green's function is

related to the original Green's function through

GR(k-1) = T-'G(k-I)F - . (3.9)

In this case, since the TPBVDS specified by (3.6) and (3.8) is both time-invariant

and in standard form, we can invoke Theorem .2.1 to conclude that the matrices

ER, AR, VR- and VR! satisfy the commutation relation (2.7).

In addition to Lemma 3.1, we will need the following result.

Lemma 3.2: Let

S U and T = W . (3.10)

If ST = TS and no eigenvalue of U equals any eigenvalue of V, then

X=Y=O.

Proof: The relation ST = TS implies that UX = XV, and thus

p(U)X = Xp(V)

for any polynomial p(.). Let a be an arbitrary generalized eigenvector of V, and

let X be the corresponding eigenvalue. Then, there exists an integer j such that

(XI-V); a = 0

so that for p(z) = (X-z),

p(U)Xa =0.

16W
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Now, if Xa # 0, then X must be an eigenvalue of U, which is a contradiction,

since X is an eigenvalue of V. Thus, we must have Xa = 0. However, since the
generalized eigenvectors a of V span the whole space, this implies that X = 0,

which is the desired result. 0

When the original TPBVDS (2.1)-(2.2) is time-invariant, we have shown

above that the transformed TPBVDS (3.6),(3.8) is such that the boundary

matrices VR, and VRf commute with ER and AR, which have the block structure

(3.6), where the blocks along the diagonal of ER, and along the diagonal of AR,

do not have eigenvalues in common. Consequently, by applying Lemma 3.2, we

can conclude that in this case, VR, and VR! are also block diagonal, i.e.,

Vi 0 0 Vf1  0 0

VRi 0 VO2 and VR0 0 Vf2 0] (3.11) S

0 0

We are now in position to derive the main result of this section.

Theorem 3.1: (Decomposition of a time-invariant TPBVDS into forwards,

backwards and marginally stable components): Through the use of a state transfor-

mation T, and by left multiplication of (2.1) and (2.2) by invertible matrices F

and L, an arbitrary time-invariant TPBVDS can be decomposed into three decou-

pled subsystems of the form

z f(k+1)=Af f(k)+Bu(k) , Vx (0)+ Vflz(N)=v, (3.12a)

Xb(k) = Az 6(k+1) - Bbu (k) V, 2 Xb(0) + Vf 2 z 6(N) = V2  (3.12b)

x.(k±1) = Uxm(k) + Bmu(k), V-m (0) + V 13 Zm(N) = v3  (3.12c)

where the matrices A1 and Ab have their roots inside the unit circle, and U has

its roots on the unit circle. The subsystems (3.12a)-(3.12c) are time-invariant and

in standard form, and correspond respectively to the forwards, backwards and

marginally stable components of the original TPBVDS (2.1)-(2.2).

Proof: As was already shown above, an arbitrary time-invariant TPBVDS

can be brought to the form (3.6)-(3.8), where the boundary matrices VR, and VRf
have the block diagonal structure (3.11). The renormalization (3.4) can be undone,
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and if we denote

ZD (k) , [ k) BD = FDB = Bb (3.13)
[ (k ) B M

we obtain the decomposition (3.12). In this decomposition, since the original sys-

tem was time-invariant, each subsystem is time invariant and individually in

standard form, although in order to guarantee that (2.4) is satisfied for each sub-

system, we may need to rescale the boundary matrices Vjk, V1  and boundary

vector vA for k = 1,2,3, by left multiplication by appropriately selected invertible
matrices.M

C. Characterization of Stable Extendibility and Internal Stability

An interesting aspect of the decomposition (3.12) of a time-invariant

TPBVDS is that it reduces the study of stable extendibility and internal stability

for a TPBVDS to the study of these properties for each of its components. We

consider first the forwards stable component.

Lemma 3.3: Consider a time-invariant TPBVDS given by

x(k+i) = Ax(k) + Bu(k) (3.14a)

Vj x(0) + Vfz(N) = v (3.14b)

where A has all its roots inside the unit circle. Then, the system (3.14) is inter-

nally stable if and only if the matrix Vi is invertible. If the system (3.14) is exten-

dible, i.e., if Ker(A") C Ker(Vf ), it is stably extendible if and only if Vf = 0, in

which case the system is causal.

Proof: Taking into account the definition (3.2) of internal stability, we see

that (3.14) is internally stable if and only if

lim AN/ 2 ( V, + V/A N)- = 0,
N-oc

which is clearly equivalent to requiring that Vi should be invertible. To study

stable extendibility, it is convenient to note that by using a procedure similar to

the one employed to obtain decomposition (3.12), the system (3.14) can be

= W WIIIN III!
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transformed so that

A= M

where M is a nilpotent matrix and J is invertible, and

V [ 0  VU,l 0t VMf]V, = vj 0 , 1 = vil

Then, the extendibility condition Ker(A ) C Ker(V 1 ) implies that we must have

VMf =0. (3.15)

Furthermore, by using the procedure described in Theorem 2.1, it is easy to check
that the Green's function G,(k) of the system which extends the Green's function

of system (3.14) to the whole line is given by

G(k) = VYA'-' for k > 0, (3.16a)

and

Ge(k) = - 0 fork < 0. (3.16b)

Since P has its roots inside the unit circle, Ge(k) diverges as k--- -cc, unless

Vif =0. (3.17)

Combining (3.15) and (3.17), we see that the TPBVDS (3.14) is stably extendible
if and only if VIf = 0, which is the desired result. In this case, the system (3.14) is

causal, and the standard form relation (2.4) implies that Vj = I, which is obvi-
ously invertible. We can therefore conclude that in this case stable extendibility

implies internal stability. 0

Lemma 3.3 can then be used to obtain the following characterization of
stable extendibility.

Theorem 3.2: An arbitrary determinist cally stationary TPBVDS is stably

extendible if and only if the decomposition (3.12) of this system is such that

Vf = V, 2 = 0, (3.18)
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and the system does not have any eigenmode on the unit circle, i.e., it does not

contain a marginally stable component of the form (3.12c).

Proof: Condition (3.18) is a direct consequence of applying Lemma 3.3 to the

forwards and backwards stable components (3.12a) and (3.12b) of the TPBVDS.

Then, if we consider the marginally stable component, we see that its extended

Green's function is

SV,3Uk-I for k > 0
Ge3(k) = _Vf 3 UN1+* for k <0

Since U has all its roots on the unit circle, Ge3(k) will not be summable for any

choice of boundary matrices V 3 and Vf 3 satisfying (2.4). Consequently, the

TPBVDS will be stably extendible only if it does not have any eigenmode on the

unit circle. 13

The above characterization shows that the class of stably extendible

TPBVDSs is not particularly interesting since it consists of systems which are

obtained by combining forwards and backwards causal and stable subsystems. It

turns out that the concept of internal stability is more interesting, since it can be

characterized as follows.

Theorem 3.3: A time-invariant TPBVDS is internally stable if and only if

the decomposition (3.12) of this system is such that boundary matrices V1 and

V1 2 are invertible, and the system does not have any eigenmode on the unit circle.

Proof: The first part of the above characterization is obtained by applying

Lemma 3.3 to the forwards and backwards components (3.12a) and (3.12b). The

condition concerning the eigenmodes on the unit circle is derived by noting that

no choice of boundary matrices V, 3 and V1 3 satisfying (2.4) will guarantee that

lim uN/ 2 (Vt 3 + V1 3 UN)-1 = . 0
N-Oc

Comparing Theorems 3.2 and 3.3, we see that staklc cxtendibility implies

internal stability, so that internal stability is the weaker and more interesting of

these two properties. In fact, from this point on, we will restrict our attention to

internal stability.

O S "
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4. Stochastic TPBVDSs and Generalized Lyapunov Equations

In this section, we study the class of stochastic TPBVDSs given by (2.1)-

(2.2), where u(k) is a zero-mean white Gaussian noise with unit intensity, and
where v is a zero-mean Gaussian random vector independent of u(k) for all k,

and with covariance Q. Thus, we have

Mju(k)u T (1) = If{k-1) , (4.1)

where M [zI denotes the mean of a random variable z, and 4k) is the Kronecker

delta function. In addition, it is assumed that the TPBVDS (2.1)-(2.2) is deter-

ministically stationary and in standard form. The assumption of deterministic

stationarity is quite important, and all the results of this paper concerning sto-

chastic TPBVDSs are restricted to this class of systems.

In the continuous-time case, and for the usual nondescriptor state-space

dynamics, a related class of stochastic boundary-value systems was examined by

Krener [17],[18], who studied the relation existing between this class of systems

and reciprocal processes. In particular, Krener considered the problem of realizing
reciprocal processes with stochastic boundary-value systems. Our goal here is more

limited in scope, in the sense that we shall seek only to obtain a complete set of

conditions under which a stochastic TPBVDS of the form (2.1)-(2.2) is stochasti-

cally stationary. It turns out that the characterization that will be obtained

involves a Lyapunov equation for the boundary variance Q which generalizes the

standard Lyapunov equation for stationary Gauss-Markov processes.

Definition 4.1: A TPBVDS is stochastically stationary if

MIx(k)x T (1)j = R(k,1) = R(k -l) . (4.2)

It should be clear that if the TPBVDS (2.1)-(2.2) is stochastically stationary,

the variance matrix P(k) = R(k,k) of x(k) must be constant, i.e., P(k) = P for

all k. Thus, our first step at this point will be to characterize completely the

matrix P(k). It can be expressed as follows in terms of the matrices E, A B, V,,

Vf, and Q descr:bing the stochastic TPBVDS (2.1)-(2.2). Let

k
0 (k) AAk-j)BBT(Ak-)EJ)T. (4.3)

3-=0
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Then, using the Green's function solution (2.5), (2.9), multiplying by its tran-

spose, and taking expected values, we obtain

P(k) = A*EN-* Q(AkEN-k)T + (V, EN-k)f(k-1)(VEN-k)T

+ (V 1Ak)(N--k)(VAk)T (4.4)

This expression can also be rewritten as

P(k) = AkEN-Q(AEN-E)T + R,(k)RT(k) ,(4.5)

where R.(k) is the weak reachability matrix (see [21-[3])

R.(k)= [V, EN-'Rs(k) V 1AkR,(N-k)], (4.6a)

and where R8 (k) is the strong reachability matrix

R,(k)= [Ak-lB EAk-2B ... Ek-B]. (4.6b)

When the system is weakly reachable, R.(k) has full rank for kE[n,N-n ] (see

121-[3]). This means that R (k)RT(k) is positive definite, and therefore P(k) is

positive definite for n<k<N-k. Thus, when the TPBVDS (2.1)-(2.2) is weakly

reachable and has a constant variance P, and N>2n, we can conclude from the

above result that P is positive definite.

The expression (4.4) for P(k) is an explicit description, and is valid in gen-
eral. However, as in the causal case, where P(k) satisfies a time-dependent

Lyapunov equation, it is also possible to obtain an implicit description for P(k) in

the form of a recursion with boundary conditions. Specifically, multiplying both

sides of equations (2.1) and (2.2) by their transposes, using the Green's function

solution (2.5), (2.9), and taking expected values, it can be shown that P(k)

satisfies the TPBVDS

EP(k+1)ET - AP(k)A T =(V, EN)BBT(ViEN)T

-(V/AN)BBT(VAN)T (4.7a)

VP(O)V- VfP(N)VT=(VEN)Q(VEN)T -(VfAN)Q(VfAN)T, (4.7b)

which can be viewed as a generalized time-dependent Lyapunov equation for P(k).
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Note however that equations (4.7a) and (4.7b) may or may not characterize

completely the variance P(k), i.e., they may have several solutions, one of which

will be (4.4). This corresponds to situations where (4.7a) and (4.7b) do not com-

pletely capture the structure of (4.4), and in this case, additional conditions would

have to be imposed to make sure that we obtain a unique solution equal to (4.4).

To obtain conditions under which equations (4.7a) and (4.7b) specify P(k)

uniquely, these equations can be rewritten in the form of a TPBDS of type (2.1)-

(2.2), and we can then apply the well-posedness test for TPBVDSs presented in

[1]. This can be done by denoting by p(k), q, and w the vectors obtained by

scanning the entries of matrices P(k), Q, and W = BBT colurrmwise, and rewrit-

ing (4.7a) and (4.7b) as

(EQ(E)p (k+l) - (A A )p(k) = (Vi ,ENOViEN)w - (Vf A N &Vf A N)w (4.8a)

(V. &Vi)p (0) - ( V f V)p(N) = ( V EN® Vs EN)q - (Vf A N &Vf AN )q,(4.8b)

where 0 denotes here the Kronecker product of two matrices [27]. Note that the

right-hand sides of the above equations are irrelevant as far as well-posedness is

concerned.

The well-posedness condition for the TPBVDS (4.8a)-(4.8b) reduces to the

invertibility of the matrix

FN = (V.OV,)(EOE)N -(Vf 0V)(A (&A)N

= (VEN)(&(VEN) - (VA N)®(Vf AN). (4.9)

We obtain therefore the following result.

Theorem 4.1: Equations (4.7a) and (4.7b) characterize uniquely the variance

P (k) if and only if

X, #111 for all j and 1, (4.10)

where \, and p, are the eigenvalues of of matrices V, EN and Vt AN, respec-

tively.

Proof: Since matrices VN and V A N satisfy (2.4), they can be brought

simultaneously to Jordan form. Furthermore, the eigenvalues X, and u,

corresponding to the same eigenvector z satisfy
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+ 1. (4.11)

Then, it is easy to check that the eigenvalues of FN must have the form

Xj> 1 - pjp (assume that V,E g and Vf AN are in Jordan form in (2.4)), so that

FN is invertible as long as

X>I X #T •

Taking into account (4.11), this gives (4.10). 0

Note that in the causal case the eigenvalues X) and u) are all equal to 1 and

0, respectively. Thus, according to Theorem 4.1, P(k) is uniquely defined. This is

expected, since in this case (4.7a) is a forwards recursion for P(k), and (4.7b) is

the initial condition P(O) = Q.

Theorem 4.1 indicates that, except under very special circumstances, the vari-

ance P(k) can be uniquely computed from the generalized time-dependent

Lyapunov equations (4.7a) and (4.7b). In addition, when the TPBVDS is stochast-

ically stationary, the matrix P(k) = P is constant, and satisfies the two algebraic

matrix equations

EPET - APA T = (VEN)BBT(VEN)T - (Vf A N)BBT(Vf A N)T (4.12)

V ,PV, T - VIPVT=(VEN)Q(V, EN)T - (V AN)Q(Vf AN)T , (4.13)

obtained by setting P = P(k+1) = P(k) and P = P(0) = P(N) in (4.7a) and

(4.7b), respectively. Equation (4.12) is a generalized algebraic Lyapunov equation,

and by analogy with the causal case, it is tempting to think that, if a TPBVDS

has a constant positive definite variance matrix P satisfying (4.12), then the

TPBVDS is stochastically stationary. Unfortunately, this is not the case, and the

correct condition for stochastic stationarity, which is condition (4.14) below,

involves the variance Q of the boundary vector v. As a first step, we show that if

this condition is satisfied, a stochastic TPBVDS has constant variance.

Theorem 4.2 A stochastic TPBVDS has a constant variance matrix P if Q

satisfies the equation

EQET - AQA T = V, BB TV T- Vf BB T VT. (4.14)
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Proof: We need to show that P(k) = P(k+1) for all k if Q satisfies (4.14).

By using expression (4.4) for P(k) and P(k+l), and noting that

[l(k) = AfI(k-1)A T + EkBBT(Ek)T

it is easy to check that P(k) = P(k+1) is equivalent to having

AkEN- -*EQET - AQAT - VBBt.

+ V1 BBT V/'](AkEN 0k) -0 .(4.15)

Clearly, (4.15) is implied by (4.14). 0

Note that (4.14) and (4.15) are in fact equivalent if either E or A is inverti-

ble. Consequently, if either E or A is invertible, the TPBVDS (2.1)-(2.2) has a

constant variance if and only if Q satisfies (4.14). However, this is not true in

general, as can be seen from the following example.

Example 4.1: Consider the TPBVDS

1 00 01) 0 1 0 0
0 0 1z(k +1)- 0 -1 z (k) + 01 -1 u (k) (4.16a)

00 0 0 0

0 0 0 z(0)+ 0 1 N x (N) v (4.16b)
.0 0. 0 0 1

where the variance of v is given by

Q = N N 2 N (4.17)
1 N 1

The system (4.16) is in standard form and is deterministically stationary. Then, it

is easy to check that Q satisfies (4.15), but not (4.14), and that (4.16) has a con-

stant variance matrix
1O0

P= 020 ?

0 0 1.

which satisfies both (4.12) and (4.13). This shows therefore that a TPBvDS may

-I

~ - ~. i
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have a constant variance matrix even if (4.14) is not satisfied.

At this point, we have introduced two generalized algebraic Lyapunov equa-

tions, namely (4.12) and (4.14), for P and Q. These equations have exactly the

same form and differ only by their right hand sides. It will be shown in next sec-

tion that (4.14) is in fact the key equation if we want to characterize stochastic

stationarity. However, However, before doing so, we note that since equations

(4.12) and (4.14) have the same form, they admit a unique solution under the

same condition.

Theorem 4.3: The generalized Lyapunov equations (4.8) and (4.10) have a

unique solution if and only if the eigenmodes or of the TPBVDS (2.1), i.e., the
values for which o-E - A is singular, are such that ,

(i) or)oj # 1 for all j and 1, (4.18)

(ii) there does not exist exist simultaneously eigenmodes which are zero,

and eigenmodes which are oo, i.e., the matrices E and A are not both

singular.

Proof: The proof is similar to that of Theorem 4.1. Equations (4.12) and

(4.14) admit a unique solution if and only if the matrix M = EQE - A (A

is invertible. But since E and A satisfy (2.3), they can be brought to Jordan

form simultaneously, and we may denote by Xj and pj the eigenvalues of

these two matrices appearing in corresponding Jordan blocks. Assuming that

E and A are in Jordan form, it is easy to check that the eigenvalues of M are

X, X,- pip. Furthermore the eigenmodes o=j =-!z /X,. Combining these two

observations, and noting from (2.3) that X, and Aj cannot both be zero, we

see therefore that M is invertible if and only if conditions (i) and (ii) are

satisfied. 01

Theorem 4.3 indicates that the class of TPBVDSs such that the general-

ized Lyapunov equations (4.12) and (4.14) have a unique solution is rather res-

tricted, since either E or A must be invertible. In the causal case, E = I is

clearly invertible, and equations (4.12) and (4.14) are identical and correspond

to the standard Lyapunov equation. Furthermore, in the causal case, a reach-

able system has a constant variance matrix if and only if A is stable. This
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means that the magnitude of eigenmodes a, is less than 1, so that condition

(4.18) is satisfied, and equation (4.12) characterizes uniquely the variance P.

For general TPBVDSs, it may happen that a TPBVDS has a constant

variance matrix P, but yet the generalized Lyapunov equation (4.12) may not

specify P completely, i.e., it may have several solutions. In this case, one way

to compute P is to use the explicit expression (4.4) for any value of k. How-

ever, another way is to use the Lyapunov equation (4.12) in combination with

perturbation methods. For example, we can replace A by A + EI and compute

the corresponding P(e). Then, P is obtained by letting E tend to zero in P(E).

This method can be justified by noting that when (4.4) is used to express P((),

with A replaced by A + eI, and with Vj, V! and Q rescaled accordingly to

guarantee that the standard form relation (2.4) is satisfied, the entries of P(E)

are rational functions of E, analytic at E = 0. This means of course that P(E) is

a continuous function of f in some neigbourhood of e = 0.

Example 4.2: Consider the anticyclic system

z(k +1) = z(k) + bu(k) (4.19a)

(1/2)(x(0) + x(N)) = 0 , (4.19b)

where u(k) is a white noise sequence with variance 1. This system is in stan-

dard form. Then, since q = 0 satisfies (4.14), (4.19) must have a constant vari-

ance. However, equation (4.12) cannot be used directly to compute this vari-

ance, since both sides are equal to zero. Thus, it is necessary to use the pertur-

bation technique outlined above. Consider the perturbed system

x(k+1) = (1 + E)z(k) + bu(k) (4.20a)

m(e)(x(0) + z(N)) = 0 (4.20b)

with m (c) = (I + (1 + )N)-l, which is also in standard form. Then, to com-

pute the variance p of (4.19), we first compute the solution p(E) of

(1-(1 + =))p(c) = m(c)2 b2 (1 - (I + 6)
2 N)

This gives

p(f) = Nb 2 /4 + 0(E) ,

. ,%

i ,,I ,
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so that

p = limp(e) = Nb2/4
-o

This result can also be obtained directly from expression (4.4).

5. Characterization of Stochastic Stationarity

In this section, our goal will be to establish the following characterization

of stochastic stationarity.

Theorem 5.1 A stochastic TPBVDS is stochastically stationary if and

only if the variance Q of the boundary vector v satisfies the generalized

Lyapunov equation (4.14).

Before proving Theorem 5.1 in full generality, we consider two special

cases.

Lemma 5.1 Theorem 5.1 holds for the class of stochastic TPBVDSs such

that either E or A is invertible.

Proof: We have to show that Q satisfies (4.14) if and only if R(k,l)

depends only on k-1. Observe first that

ER(k+1,I) = M[Ex(k+=)z T (1)] - M[(Ax(k) + Bu(k))zT(I)] . (5.1)

Then, using the Green's function solution (2.5), (2.9) to compute

M[u(k)z T (I)], (5.1) can be expressed as

ER(k+1,i) - AR(k,I) = -BBT(VfE-AN -- (-I))T for k>l . (5.2a)

Similarly, it can be shown that

R(k,I+1)ET - R(k,1)AT - VAk-l-EN1 (-)BB for k>I . (5.2b)

We prove first that if Q satisfies (4.14), the system is stochastically sta-

tionary. Note, according to Theorem 4.2, that in this case R (k,k) = P is con-

stant. We now want to prove that R (k+s,k) does not depend on k. Using

(5.2a) and (5.2b), and the fact that R (k,k) = P, we obtain

ER(k+l,k) = AP - BBT(V! AN-l)T

R(k+1,k)A T = PET - V, EN-BBT

-'U U U A PU U



- 27 -

More generally, we have

ER(k+s,k)= ASP - ZA--EjBBT(VfAN-1-E )T , (5.3a)
j=O

s-1

R-(k +s,k)(A P(Es - V EN-lAJBB(Es-)-IA) r . (5.3b)
j-0

Since either E or A is invertible, one of equations (5.3a) or (5.3b) completely

characterize R (k +s,k), and clearly this matrix does not depend on k, so that

R(k+s,k) = R(s).

Conversely, assume that R (k,1) = R (k-1), i.e., the TPBVDS is stochasti-

cally stationary. Then, R (k,k) = P is constant, and since either E or A is

invertible, according to the comment immediately following the proof of

Theorem 4.2, Q must satisfy (4.14), as desired. 0

Next, we consider a second special case of Theorem 5.1.

Lemma 5.2: The TPBVDS

0 ] X(k+1) 1 1[X(k) 1 B10 2 [z(k1) =to i]x 2(k)] +B u(k) (5.4a)

[1 01[zj(o)1 + 0 01 [z1 (N)l 1 (5.4blo 0J X2(0)] 0 1i [z 2 (N)] - V2]( )

is stochastically stationary if and only if Q satisfies (4.14). For this particular

system, when Q is partitioned as [Q11 Q12
12Q221

(4.14) reduces to

Q11 -AIQ 1 A T =BjB T  (5.5a)

Q22- E 2 Q 22E [ T B 2B2 ,( 5.5b)

and

Qi 2E T = AIQ 12 • (5.5c)
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Proof: System (5.4) consists of two processes zl(k) and z 2(k) which are

respectively forwards and backwards causal, and are correlated through the

noise u(k) and boundary vector v. Clearly, system (5.4) will be stochastically

stationary only if each one of these subsystems is stationary. More precisely, if

the covariance function of (5.4) is partitioned as

[ RII(k,l) R12(k,l)1R (k,I) R [R (k,l) R22(k,l)'

RiI(k,l) = R 1 1(k-I) and R 22(k,l) = R 22(k-1), which corresponds to requir-

ing that subsystems 1 and 2 should be individually stationary, if and only if

(5.5a) and (5.5b) are satisfied. Equations (5.5a) and (5.5b) are the usual

Lyapunov equations for the causal subsystems 1 and 2. Assuming now that

subsystems 1 and 2 are individually stationary, the overall system is stochasti-

cally stationary if and only if the cross-correlation between these subsystems is

such that R 12(k,1) = R 12(k-1). From the solutions

k-i
xl(k) = A v1 + EA k-'-'Blu(j) (5.6a)

j-0
N-1

X2 (1) = E -V 2 - E E-B 2 u(j), (5.6b)
j =1

it is easy to check that

R 1 2(k,1) = A Qi 2(E 2)T for k<l (5.7a)

and
k -i -1"

R 12(k,I) = A'Q 12(EN-I)T - kA 1 1 jB2 BT(E )T  for k>I . (5.7b)
j-0

The second term on the right-hand side of (5.7b) depends only on k-1, and

consequently we have R 12(k+1,1l) = R 12(k,1) for all k, I if and only if

AI Q1 2 E2T -A Q ](E -(+1))T (5.S)

Clearly (5.8) is implied by (5.5c), and conversely if we set k=O and I=N-1 in

(5.8), we obtain (5.5c). This establishes that conditions (5.5) are necessary and
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sufficient for the TPBVDS (5.4) to be stochastically stationary. 03

We can now prove Theorem 5.1 in full generality.

Proof of Theorem 5.1: The first step is to use a procedure analog to

that of Theorem 3.1 to decompose the TPBVDS (2.1)-(2.2) as

E, 0 0 xl(k+l) NA 0 0 z1(k) [B 1

0 E2 0 X2(k+1) = 0 A 2 0 X2(k) 1+ B 2 u(k) (5.9a)

0 0 NE x3(k+l) 0 0 A3 X3 (k) B3

Vi 1 0 0 --1(O) Vf 1 0 0 x I(N) V

0 Vi 2  0 22(0)- + 0 V1 2 0 X2(N) - v 2 ], (5.9b)

0 0 Vi 3 Z(0)] 0 0 Va 3 X(N) V3

where NE and NA are nilpotent matrices, and E1 , E2, A 2, and A3 are inverti-

ble. In addition, observe that since the TPBVDS that we consider was

assumed at the beginning of Section 4 to be deterministically stationary, the

null space of E' must be included in the null space of V, and the null space

of A' must be included in the null space of V1 . Since NE and NA are nilpo-

tent, this implies

V, 3 =0 and V 1 -=0. (5.10)

Then, (5.9) can be simplified by noting that subsystems 1 and 3 are just causal

and anticausal nilpotent systems. Indeed, since E, is invertible and has the

same Jordan structure as NA, we can multiply subsystem 1 by El -1 , and the

resulting system will be causal and such that the dynamics matrix ElNA is

nilpotent. A similar transformation can be performed on subsystem 3. Thus,

without loss of generality, it can be assumed that (5.9) is in the form

1 0 0 xl(k+i) NA 0 0 x1(k) B,
E2  0 X2(k+l) = 0 A 2 0 z 2(k) + B 2 ts(k) (5.11a)
0 NE 3(k+l) 0 0 1 X3(k) B3

1 0 o] 1 (0) [o 0 0' x(N) V1
0 O 2 (0) + 0 Vt 2 0 2N 21 (5.11b)

.000 3 (0) 10 0 1' jX 3(N) V

J ,'U

'S ~ ].
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Note that Vil and V13 are equal to I because the boundary matrices satisfy

the standard form relation (2.4).

Then, it is easy to check that the TPBVDS (5.11) is stochastically sta-

tionary if and only if the TPBVDSs S12, S23, and S1 3 obtained by combining

subsystems 1 and 2, 2 and 3, and 1 and 3, are individually stochastically sta-

tionary. This is a consequence of the fact that if we partition R (k,l) as

R 11(k,l) R 12(k,l) R 13(k,l)

R(k,l)= R 21 (k,l) R 22(k,l) R 23(k,l )

R31(k,i) R32(ki) R33(kl)J

and if S12, S23, and S13 are stochastically stationary, then everyone of the

block entries of R (k,1) will be a function of k-1. Similarly, note that the gen-

eralized Lyapunov equation (4.14) for the TPBVDS (5.11) is equivalent to the

combination of the smaller size generalized Lyapunov equations associated to

subsystems S1 2, S2 3, and S13. This is seen by noting that if

Q11 Q12 Q13

Q- Q21 Q22 Q23

Q31 Q32 Q33

the Lyapunov equations associated to S 12, S23 , and S 13 are obtained by

removing respectively the third, first, and second block rows and columns of

equation (4.14) for Q. Now, since the matrices

E12= 0 E2]
1: 0]

and

A 23 - ]

associated respectively to subsystems S 12 and S 23 are :nvertible, we can con-

clude that Lemma 5.1 is applicable to these two systems. In addition, subsys-

tem S13 has precisely the structure considered in Lemma 5.2. Each of the

above mentioned subsystems is therefore stochastically stationary if and only
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if the corresponding smaller size Lyapunov equations are satisfied. This proves

therefore Theorem 5.1. 0

Assuming now that the TPBVDS (2.1)-(2.2) is stochastically stationary,

the covariance R (k+s,k) = R (s) has the following property.

Theorem 5.2: The covariance R (s) of a stochastically stationary

TPBVDS satisfies the second-order descriptor recursions

ER(s+1)ET + AR(s+1)A T = AR(s)ET + ER(s+2)AT , (5.12)

which are conditionable, in the sense that there exists boundary conditions

involving R (0), R (1), R (N-1) and R (N), which when combined with (5.12)

define a well-posed second-order TPBVDS.

The recursions (5.12) are analogous to the second-order differential equa-

tion obtained by Krener 1171 for the covariance of a continuous-time stationary

two-point boundary value process. To obtain equation (5.12), consider (5.2a),

and observe that this relation is valid independently of whether E or A are

invertible or not. Setting k-I = s inside (5.2a) gives

ER(s+1) - AR(s) = L(s) , O<s<N-1 (5.13)

with

L(s) = -BBT(Vf ESA N-l-s)T (5.14)

Then, noting that

L(s+1)AT -L(s)ET =0 , 0<s<N-2, (5.15)

and combining (5.15) with (5.13), we obtain (5.12).

We still need to show the conditionability of (5.12). Recall that the con-

cept of conditionability for TPBVDSs was introduced by Luenberger [5i-j6]. To

prove the conditionability of (5.12), we will need the following result.

Lemma 5.3: The mth order descriptor system

Qmx(k+m) + Qm lx(k+m-1) + • • • + Qox(k) = Bu(k) , O<k<N-m (5.16)

is conditionable if and only if the determinant of the polynomial matrix

Q(z) = Qmz m + Q-iZrnm- + " + Q0 does not vanish identically.
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Proof: Using state augmentation, we can rewrite (5.16) as

Ei(k+1) = Ai(k) + Bu(k), (5.17)

with

I 0 1 0

S0 1 0

and B =

I 0 I

Qm -Q0 -Qm-1 B

Then, according to [61, p. 474, the descriptor system (5.17) is conditionable if

and only if the pencil zE-, is regular, i.e. iff det[zE-A = detQ(z) does not

vanish identically. C

Now, using Lemma 5.3, the conditionability of (5.12) becomes equivalent

to the invertibility of -z 2(E(A) + z(E0E + A (A ) - A &E) for some z.

But, this matrix is equal to (zE - A )&(E - zA). Since E and A form a reg-

ular pencil, we can always find a z such that (zE -A) and (E - zA) are

both invertible, which implies that their Kronecker product is invertible. This

completes the proof of Theorem 5.2.

Theorem 5.2 indicates that there exists a set of boundary conditions

involving R(0), R(1), R(N-1) and R(N), which when combined with (5.12)

define a well-posed TPBVDS. However, as one might expect, there is in fact a

wide choice of boundary conditions which will work. One possible choice can

be obtained by considering the two coupled first order descriptor equations

(5.13) and (5.15), instead of the second order system (5.12). Suppose that L (s)

has already been computed, yielding solution (5.14). Then, a boundary condi-

tion which when combined with (5.13) defines a well-posed first-order

TPBVDS is given by

VR(0) + VJ R(N) = Q(EN)T (5.18)

This boundary condition is obtained by multiplying (2.2) on the right by

zT(0), taking expected values, and using the Green's function expression (2.5).

Note that the TPBVDS (5.13), (5.18) has exactly the same dynamics and

or
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boundary matrices as (2.1)-(2.2) and is therefore guaranteed to be well-posed.

This leaves us with the problem of computing L (s) for O<s <N-1 from the

first-order recursions (5.15). However, we already know that the solution must

be given by (5.14). This implies in particular that

ER(1) - AR (0) = L(0) = -BBT(VAN-)T (51§a)

and

ER(N) - AR(N-1) = L(N-1) = -BBT V,(EN-)T (5.19b)

Note that, as expected, boundary conditions (5.19a) and (5.19b) involve only

R(0), R(1), R(N-1), and R(N). Also, the TPBVDS defined by (5.15) and

(5.19a), (5.19b) is clearly well-posed. In fact, it is overdetermined since the

boundary conditions (5.19a) and (5.19b) are redundant. This redundancy can

be eliminated by considering the smaller-size boundary condition

L(O)(V,A)T + L(N-1)(V1 E) T = _BBT VT (5.20)

which is obtained by combining (5.19a) and (5.19b), and checking that the

TPBVDS (5.15), (5.20) is well-posed. Note that to some extent, the problem of

finding boundary conditions which guarantee that the first-order recursions

(5.15) for L(s) are well-posed is an exercise in futility, since the closed-form

solution (5.14) is already available. However, if we consider the second-order

recursions (5.12), the above discussion shows that boundary conditions (5.18)

and (5.20) will guarantee well-posedness.

As was already mentioned, these boundary conditions are not the only

ones which will guarantee well-posedness. For example, if we use (5.2b) as

starting point, we obtain the coupled first-order descriptor equations

R(s)ET - R(s+1)A T =M(s) , O<s<N-1 (5.21a)

EM(s+1) - AM(s) = 0 , O<s<N-2 (5.21b)

where M(s) is in fact given by the closed-form expression

M(s) = V,A s ENS-BBT (5.22)

Then, these equations are well-posed for the boundary conditions
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R(O)V/ +R(N)VIT = ANQ (5.23a)

V, EM(O) + Vf AM(N-l) = V, BBT (5.23b)

where (5.23a) is obtained by multiplying (2.2) on the right by x T(N) and tak-

ing expected values, and where (5.23b) is a direct consequence of analytical

expression (5.22). Substituting (5.21a) inside (5.23b), it is also easy to check

that the boundary conditions (5.23) for (5.12) involve only R(0), R(1),

R(N-1), and R(N), as desired.

There are in fact many valid choices of boundary conditions for the

second-order system (5.12). For example, one obvious boundary condition is

given by R (0) = P, where P can be found by solving the algebraic Lyapunov

equation (4.12) either directly or by the perturbation technique described in

Example 4.2.

Example 5.1: Consider system (4.19). In Example 4.2 it was shown that

its variance matrix is given by

p = r(O) = Nb'/4

We shall now seek to compute its covariance function r(k) for k E [0,N]. We

use the second-order recursions (5.12), which here take the form

r(k+2) = 2r(k+l)-r(k). (5.24)

Since r (0) is already known, we only need r (1) to be able to solve (5.24) in the

forward direction. But according to (5.19a), we have

r(1) - r(0) = -b 2/2

so that

r(1) = (N - 2)b 2/4

and then using (5.24), we find

r(k) = (N - 2k)b 2/4

.4

'4,
'4
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6. Characterization of Internal Stability

For causal systems, the relationship between the existence of a positive

definite solution to the standard Lyapunov equation and stability is well

known. Specifically, for a causal and reachable system, the Lyapunov equation

has a positive definite solution if and only if the system is strictly stable. In

this section, for the class of deterministically stationary TPBVDSs, we will

study the relation existing between the existence and uniqueness of positive

definite solutions to the generalized Lyapunov equation (4.12) for the state

variance P, and the property of internal stability. Note that, whereas the gen-

eralized Lyapunov equation (4.14) for Q was the key to the characterization of

stochastic stationarity derived in the previous section, equation (4.12) for P

plays the main role in our study of internal stability. An important feature of

this equation, which was not present in the causal case, is that it depends on

the interval length N. It turns out that this dependence on interval length is

in fact very useful to characterize internal stability, since this last concept

relies also on increasing the interval length to study the effect of the boundary

conditions on states close to the center of the interval.

More precisely, to see why interval length plays an important role in

studying the generalized Lyapunov equation (4.12), consider the anticyclic sys-

tern (4.19) of Example 4.2. This system is clearly unstable, since its only mode S

is on the unit circle. Yet, the choice q = 0 for the variance of the boundary

condition guarantees that the system is stochastically stationary, and has a

constant positive state variance p - Nb2/4. Thus, the existence of a positive

definite solution to the generalized Lyapunov equation (4.12) for a fixed inter- a

val length is clearly not sufficient to guarantee that a TPBVDS is internally

stable. However, in this particular case the variance p, viewed as a function of

the interval length N, diverges as N--*oo, which is an indication that the sys-

tem is actually unstable.

Another useful observation is that for TPBVDSs, the generalized

Lyapunov equation (4.12) for P may admit a nonnegative definite solution

even when the system cannot be made stationary by any choice of boundary

vector variance Q, i.e., there may be a nonnegative solution to (4.12) when
'a t~

A.

Aft..

.,. o.,
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there is no nonnegative solution to equation (4.14) for Q. This is illustrated by

the following example.

Example 6.1: Consider the system

x(k+l) = (1/2)x(k) + u(k) (6.1a)

m(z(O) + 2z(N)) = v , (6.1b)

where m = (1 + 2 (1/ 2 )8) - ', and u(k) is a white noise sequence with unit

variance. System (6.1) is in standard form and internally stable. The general-

ized Lyapunov equation (4.14) for q takes the form

(3/4)q = -3m 2 , (6.2)

which yields a negative value of q, so that the system cannot be made station-

ary over any interval [0,N]. Yet, the Lyapunov equation (4.12) is given by

(3/4)p = m 2(1 - 4 (1 / 4 )N) , (6.3)

and its solution p is positive provided that N is larger than 1. However, this

solution is not the state variance of the TPBVDS (6.1), which in this case is

not even constant. This can be seen by noting from (4.3)-(4.4) that the state

variance p(k) is given by

p (k)-= q + 4 m2t1~ _ 4 k_J' (6.4)4~k --- 4- . 4 N 4 -k

which is clearly not constant.

Example 6.1 shows that the generalized Lyapunov equation (4.12) may

admit a unique positive definite solution P even when the TPBVDS (2.1)-(2.2)

cannot be made stochastically stationary for any choice of boundary vector

variance Q, but in general this matrix P bears no relation whatsoever with

the state variance. However, it will be shown below in Theorem 6.3 that, for

an internally stable deterministically stationary TPBVDS, independently of

the choice of boundary matrix Q, as the interval length N---v,, the variance

matrices P(k) of states near the center of the interval approach a constant

matrix P which is the solution to the generalized Lyapunov equation (4.12)

with N set equal to x.

.1,
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The main objective of this section is to characterize the property of inter-
nal stability in terms of positive definite solutions of (4.12), regardless of
whether such solutions correspond to the variance of a stochastically station-

ary TPBVDS or not. Specifically, it will be shown that if for any N, the gen-
eralized Lyapunov equation (4.12) has a nonnegative definite solution P whose

main-diagonal elements are unique in the coordinate system where E and A
are both in Jordan form, then the system (2.1)-(2.2) is internally stable.

To see why the main diagonal elements of P come into the picture, con-

sider the proof of Theorem 4.3, where the existence and uniqueness of solutions
to equations (4.12) and (4.14) was discussed. By examining these equations in

the coordinate system where both E and A are in Jordan form, it is easy to
check that the main diagonal elements are unique if and only if the pencil

,E - A does not have any eigenmode ai located on the unit circle, whereas

as was observed in Theorem 4.3, the off-diagonal elements are unique iff there

does not exist eigenmodes cry and or, such that either or, = 1 or such that
orl = 0 and or = oc. Note that there is no contradiction between the above

conditions for uniqueness of the diagonal and off-diagonal elements of P,
respectively, since when oj is on the unit circle, then cry is also an eigenmode,

*

and or, or = 1. The reason why it is important to distinguish between the case
when P does not have unique diagonal elements, and the case when the off-

diagonal elements are not unique, is that in the first case, the system has
eigenmodes on the unit circle, and is therefore unstable, whereas in the second
case, the TPBVDS may be internally stable. As an illustration of this last fact,

consider system (5.4). and assume that A , and E 2 are ndlpotent matrices. Since
thi:. system is constituted of two decoupled forward and backward causal and

stable subsystems, (5.4) is clearly internally stable. Yet, since A 1 and E2 do

not have full rank, there exists eigenmodes cTr = 0 and or 1 = oc, so that the

off-diagonal elements of P are not unique in (4.12).

Before presenting the main results of this section, we need to prove the
following lemma. %

• " II ". -. ". , " % -. .. , "i, " , -,* m. - "- - . P .. A. . .. . - -A .. . . .. . . . .. , . - -. . . 5- .- . - = '
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Lemma 8.1: Let A and V be two square matrices which commute, i.e.,

AV= VA . (6.5)

Then, if V is singular, there exists a right (left) eigenvector of A in the right

(left) null space of V.

Proof: We will prove this result for the case of a right eigenvector of A.

Let xEKer(V). Then,

Vz =0

so that

VAx = AVx = 0,

and consequently AxEKer(V). Thus Ker(V) is A invariant, which implies

that A has at least one eigenvector in the null space of V. C

We can now prove the following result.

Theorem 6.1: Assume that TPBVDS (2.1)-(2.2) is deterministically sta-

tionary and weakly reachable. Then, if for some N, the generalized Lyapunov

equation (4.12) has a nonnegative definite solution P whose main diagonal ele-

ments are unique in the coordinate system where E and A are both in Jordan

form, the TPBVDS is internally stable

Proof: The uniqueness of the main diagonal elements of P guarantees

that there are no eigenmodes on the unit circle. Thus, the TPBVDS decompo-

sition of Theorem 3.1 takes the form

E = 1 Ab A = 01, B Bf , (6.6a)

where the eigenvalues of A1 and Ab are inside the unit circle, and

V, 0 v ,2 ] ' v 0 Vs 2] (6.6b)

To prove stability, we need to show that V, 1 and V 2 are invertible. Using the

above decomposition, the generalized Lyapunov equation (4.12) can be

expressed as
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P1 -A 1 P AT= V B/V' --(VI 1 AjI)BBT(V/ 1 AfIT (6.7a)

Ab Pb Ab- Pb = (Vi 2A)B Bb( Vi 2A ) T - V 2 Bb Bb'V 2  (6.7b)

P bAb - AP = V., BbT (V, 2AN) T -(VflA)B/BTVf, (6.7c)

where &

P/ P/ b

P 1P P6 (6.8)

Clearly, if P is nonnegative definite, so is P1 . Since we also know that

A1 is strictly stable, from (6.7a) we can conclude that if z is an arbitrary

left eigenvector of A 1 , then
zT(vjjBf B fViT - (V VAfN)Bf B ( Vf AN )X > 0 .(6.9)!

We would lik. o show that Vi 1 is invertible. To do so, assume that V I is not

invertible. Then, according to Lemma 6.1, there exists a left eigenvector x of

A 1 , i.e.,

Z TAf = XT , (6.10a)

such that

z T V = 0. (6.10b)

We also know that the system is weakly reachable, and from the characteriza-

tion of weak reachability presented in [2], we have

XT[V,1Bf Vf B] 0 ,.

so that

Tv Bf00 (6.11)

Now, taking (6.10b) into account in (6.9), and observing that A1 and V1 1 I

commute, we find that

0 zTV1ANB =XNzTVffBf1 , (6.12)

where X is the eigenvalue appearing in (6.10a). But (6.12) is compatible with

--%*£

.S.?
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(6.11) only if we have X = 0, so that z T must be in the left null space of both

A1 and V,. However, in this case the matrix

Vi. + V/1A N

characterizing the well-posedness of the forward stable subsystem is not inver-

tible, which contradicts our assumptions. Thus Vil must be invertible. Simi-

larly, it can be proved that Vf 2 is invertible. 0

As in the causal case, the above result has also a converse, i.e., given an

internally stable TPBVDS, there exists a positive definite solution to the

Lyapunov equation (4.12). However, this result is only valid for large N, and

it requires stronger conditions than those of Theorem 6.1. First, the conditions

of Theorem 4.3 on the eigenmodes of the TPBVDS must be satisfied, so that
(4.12) will be guaranteed to have a solution independently of the choice of of

input matrix B and of boundary matrices Vi and V1 , in which case this solu-

tion will in fact be unique. The second condition is that the TPBVDS must be

strongly reachable, instead of weakly reachable as in Theorem 6.1. This is due

to the fact that we need to make sure that as N-oo, the solution of (4.12) is

positive definite, instead of merely nonnegative definite.

Theorem 6.2: Consider a deterministically stationary TPBVDS which is

internally stable, strongly reachable, and whose eigenmodes aj. satisfy the con- 0

ditions of Theorem 4.3 for the existence of a unique solution PN to the gen-

eralized Lyapunov equation (4.12). Here the interval length N is allowed to
vary, and the dependence of P on N is denoted by the subscript N of PN"

Then, there exists N'>0 such that PN is positive definite for all N>N*.

Furthermore, as N---c,

i0!
PN P. =(6.13)PN P" 0 P6*

where Pi and Pb" are respectively the solutions of the usual algebraic

Lyapunov equations for the forward and backward stable subsystems, i.e.,

P7 - Af P/AT = Bf B1T, (6.14a)

fp
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Pb" - AbPbAbT= BbBb. (6.14b)

Proof: First, observe that since the interval length N varies, the boun-

dary matrices V, 1, Vf 1, and V 2, V1 2 associated respectively to the forward

and backward stable subsystems need to be rescaled in order to satisfy the

standard form identity (2.4) for all N. The rescaled boundary matrices are

given by

VI(N) =(V, 1 + Vf Af')-Vi1  , VI(N) = (VI + Vf 1Aj'V-1V/ 1 (6.15a)

V1,2(N) =(V, 2AN + V1 2)- V. 2  V 2(N) = (Vi 2A("+ V1 2)'V 1 2  (6.15b)

and since the TPBVDS is internally stable, the matrices Vil and V1. 2 are

invertible, so that as N-- c, I

Vj,(g ) - I , V I,(N ) - Vii'Vf1 , V(Y ) - Vf2Vi 2,1 Vf 2(N) -- I (6.16)

Consider now the matrix PN given by (6.8), whose entries satisfy the

Lyapunov equations (6.7a-c), where the boundary matrices on the right hand

side are replaced by the scaled matrices (6.15). We want to show that for N

large enough, the solutions P1 ,N and Pb,N of (6.7a) and (6.7b) are positive

definite and tend to P; and Pb* given by (6.14), and that the solution Pfb,N

of (6.7c) goes to zero as N goes to infinity.

The first step is to observe that, as N--ooo, since the scaled boundary

matrices tend to finite limits given by (6.16), the right-hand side of (6.7c)

tends to zero. But the eigenmodes of the system are such that the solution PN

is unique, and therefore the solution Pfb,N of equation (6.7c) is unique and I

tends to zero as N goes to infinity. .,

Next, consider Lyapunov equation (6.7a), and observe that since the

TPBVDS is strongly reachable, the matrix pair (A1 ,B 1 ) is reachable in the

usual sense for causal systems. But since the system is internally stable,

Vj(N) given by (6.15a) is invertible, and noting that it commutes with A,-

we can conclude that the pair (A1 , Vi (N)B 1 ) is also reachable in the usual

sense. Then, the solution P1 ,N of (6.7a) can be expressed as

Pl~g= Plg -- P ,g(6.17)
I
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where P fN and P-,N are respectively the solutions of

PfN - A1 Pf+ NA/ = V 1.(N)B BTVil(N)T (6.18a)

P/,N - AP NA/= (Vy(N)Af)B 1 B(VI(N)A7)T (6.18b)

Since (A 1 , V1 (N)Bf ) is reachable, PIfN is positive definite for all N, and

since Vi,(N)-I as N-oc, Pf+,N---P', where P7 is the unique positive

definite solution of (6.14a). Furthermore, as N---c, the right-hand side of

(6.18b) tends to zero, so that P/-,N tends to zero. From (6.17), we can therefore
conclude that there exists an integer N* such that P1!,N is positive definite for

all N>N*. Similarly, it can be shown that the solution Pb,N of (6.7b) is posi-

tive definite for large enough N and tends to P6', which is the unique positive
definite solution of (6.14b).

We have therefore shown that as N.-*oo, Pf,N and Pb,N approach posi-

tive definite matrices Pi and Pb', and that Pfb,N tends to zero. Consequently,

the matrix PN is positive definite for sufficiently large N and has for limit P'

given by (6.13). 0

Example 6.2 Consider system (6.1), which is both internally stable and
stongly reachable. Then, the solution of the generalized Lyapunov equation

(6.3) is

PN = m(1

3 4N

which is positive definite for N>2. Furthermore, as N-oo,

PN -* = 4m 2/3 , (6.19)

where p' is the solution of the generalized Lyapunov equation (6.3) with

N =oo.

It is worth noting that when N = -, if the TPBVDS is internally stable,

in the coordinate system corresponding to decomposition (6.6), the generalized
Lyapunov equation (4.12) takes the form

EPET APA T W, (6.20)

with

-i *I,%N'.% .~ ..~ % V~v".. --..



-43-

W 0 -Bb B6 T  (6.21 )

Then, independently of whether eigenmodes or satisfy the conditions of

Theorem 4.3, one solution of (6.20) is P* given by (6.13)-(6.14), which is non-

negative definite regardless of the reachability properties of the TPBVDS 4'

(2.1)-(2.2). In other words, for N = cc, the conditions of Theorem 6.2 can be
weakened, thus giving the following result.

Corollary 6.1 Let TPBVDS (2.1)-(2.2) be internally stable. Then the
generalized Lyapunov equation (4.12) with N = cy has a nonnegative definite

solution P'. This solution is positive definite if the system is strongly reach-

able.

For an internally stable TPBVDS, the solution P* of the generalized

Lyapunov equation (4.12) with N = oo has also the following stochastic

interpretation.

Theorem 6.3 Let system (2.1)-(2.2) be internally stable. Then, for any
choice of boundary variance Q, as N goes to infinity, the variance matrix of

states located close to the center of interval [O,Nj converges to the solution P*
of the generalized Lyapunov equation with N = oc.

Proof: Let PN(k) be the variance matrix of the state z(k) of system

(2.1)-(2.2) defined over interval [0,N]. Then, if I is an arbitrary but fixed

integer, we want to show that

weef PN((N/2)+I) = P', (6.22)

where for simplicity it has been assumed that N is even. Our starting point is
expression (4.4) for the state variance, i.e.,

PN((N/2)+1) = A (N/2)+1 E(N/2) Q (A (N/2)+1 E(N/2)-I )T

+ (V, (N)E(N/12)-1)H((N/2)+I-1)(V, (N)E(N/12)-I)T

+ (Vf (N)A(N/ 2)+I)I((N/2)-I-1)( V (N)A (N/2)+I)T

where -(k) is given by (4.3), and boundary matrices V,(N) and V1 (N) are
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obtained by rescaling V and Vf so that the standard form identity (2.4) is

satisfied for all N. Then, in the coordinate system corresponding to decomposi-

tion (6.6) of the TPBVDS in its forward and backward stable components, by

using expressions (6.16) for the limit of V, (N) and Vf (N) as N-oc, and tak-

ing into account the fact that Af and Ab are stable matrices, we find that1 0] 1 0] [ 0 1 1 [1(c o) ( .3
Jim PNv((N12)+I)= 0 I(O) + -(,)8.3
N--. 0 0 0 1 0 1

But since

[ ] 01

commute with both E and A, (6.23) can be rewritten as

kB BT obb](Elim PN((N/2)+I) = JlimE A k-EJ 0 f . (6.24)

Thus,

y-'EAiBI B/(Ai)To
=0

Jim PN((N/2)+I) - 0 XN -- 0 ) A g'Bb BT( A T)

j=0

0 Pb*jP 
(6.25)

This completes the proof of Theorem 6.3. 0

Example 6.3 Consider the TPBVDS (6.1) of Example 6.1. According to

(6.19), for this example the solution of the generalized Lyapunov equation

(4.12) with N = oc is p* = 4m 2/3. Then, setting k = (N/2)+1 in expression

(6.4) for the state variance, we obtain

im mPN((N12)+) = 4m 2 /3 = p- ,

L -O
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as expected.

Theorem 6.3 shows that, regardless of the boundary variance Q, the state
variance of an internally stable, deterministically stationary TPBVDS con-

verges to the constant matrix P' given by (6.13)-(6.14). However an even more

interesting observation is that under the above assumptions, the TPBVDS will

converge to a stochastically stationary system as N--oo. More precisely, if we

denote by

RN((N/2)+k,(N/2)+l) = M[x((N/2)+k)x T ((N/2)+I)l (6.26)

the correlation matrix of states x((N/2)+k) and z((N/2)+l), where k and 1

are fixed integers, by using the Green's function solution (2.5),(2.9) to evaluate

the correlation matrix, and following steps similar to those used in the proof of

Theorem 6.3, it can be shown that in the coordinate system corresponding to

the forward and backward stable decomposition (6.6), we have

lim RN((N/2)+k,(N/2)+l) = R*(k-1)

k-1-1
- E Ak(j BfBT )

0 p (A _ -AT(6.27)

where for convenience it has been assumed that l<k. Since the limit obtained

in (6.27) depends only on k-1, we can therefore conclude that independently

of the choice of boundary variance Q, an internally stable TPBVDS converges

to a stochastically stationary system as N-o. This stochastically stationary

system is separable into forward and backward causal components, which are

however correlated through the input noise u(k). This last fact can be seen

from (6.27), where if we denote by z'(k) the limiting process obtained by let-

ting N--*o, and by shifting the left boundary of the interval of definition to

-K, the cross-correlation Rib(k-1) between the forward component zi(k) and

the backward component zbU(I) is nonzero for 1<k, since both of these

processes depend on the noise over interval 1l,k], whereas the cross-correlation
between Xb(k) and x (I) is zero, since they depend on the noise over disjoint

intervals.
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7. Conclusions

In this paper, in spite of the fact that two-point boundary-value descrip-

tor systems are defined only over a finite interval, we have been able to intro-

duce a concept of internal stability for these systems. According to the

definition that was selected, a TPBVDS is internally stable if the effect of

boundary conditions on states close to the center of the interval goes to zero as

the interval length goes to infinity. Stochastic TPBVDSs have also been exam-

ined, and the property of stochastic stationarity was characterized in terms of

a generalized Lyapunov equation for the variance of of the boundary vector. It

was also shown that the state variance satisfies another generalized Lyapunov

equation which can be used to characterize the property of internal stability.

Specifically, it was shown that for a weakly reachable TPBVDS defined over a

finite interval, if the generalized Lyapunov equation for the state variance

admits a nonnegative solution with unique diagonal elements in the coordinate

system where the dynamics are in Jordan form, then the TPBVDS is internally

stable. Conversely, it was shown that for an internally stable TPBVDS, the

generalized Lyapunov equation for the state variance admits a positive definite

solution when the interval length N is sufficiently large. It was also proved

that, independently of the boundary matrix variance, an internally stable sto-

chastic TPBVDS converges to a stochastically stationary process as the inter-

val length N---c.

As was already mentioned in the introduction, this paper is part of a

larger effort devoted to the study of the system properties, and the develop-

ment of estimation algorithms for TPBVDSs. In particular, the smoothing

problem for TPBVDSs was examined in [41, where it was shown that the

smoother itself is a TPBVDS which can then be decoupled into forward and

backward stable components through the introduction of generalized Riccati

equations that were studied in [25]. An interesting question which arises in this

context is whether for a strongly reachable and observable TPBVrDS, the

smoother is internally stable in the sense discussed in this paper. It turns out

that this is the case, and the proof of this fact will appear in 128j. In other

words, the concept of internal stability developed here is expected to have the

" !N
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same far ranging applications as for standard causal systems.
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